Susanna C Byram

Learn More
In the field of neuroimmunology, an emerging area of research involves the role that the immune system plays in neural injury and repair. Such immune:neural interactions may involve both neuroprotective and neurodestruction actions. To begin to address the compelling, and clinically relevant, issue of how the immune system impacts neural reparative(More)
Our laboratory discovered that CD4-positive (CD4+) T cells of the immune system convey transitory neuroprotection to injured mouse facial motoneurons (FMNs) (Serpe et al., 1999, 2000, 2003). A fundamental question in the mechanisms responsible for neuroprotection concerns the identity of the cell(s) that serves as the antigen-presenting cell (APC) to(More)
The CD4(+) T lymphocyte has recently been found to promote facial motoneuron (FMN) survival after nerve injury. Signal Transducer and Activator of Transcription (STAT)4 and STAT6 are key proteins involved in the CD4(+) T cell differentiation pathways leading to T helper type (Th)1 and Th2 cell development, respectively. To determine which CD4(+) T cell(More)
Numerous studies have shown that motoneuron survival can be facilitated by neurotrophic factors (NTF) after injury. However, the ability of specific NTF to rescue facial motoneurons (FMN) from axotomy-induced death in immunodeficient mice has not been tested. Therefore, one goal of this study was to determine if brain-derived neurotrophic factor (BDNF), an(More)
CD4+ T cells rescue facial motoneurons (FMN) from axotomy-induced cell death. The objective of this study is to determine if the CD4+ T regulatory subsets, CD4+CD25+ T or CD1d-restricted NKT cells are critical for FMN survival after facial nerve axotomy. Surviving FMN within facial motor nuclei from axotomized and control sides 4 weeks after axotomy were(More)
The goal of the current study was to determine if natural killer (NK) cells mediate facial motoneuron (FMN) survival following injury. Wild-type (WT), perforin/recombinase activating gene-2 knockout (pfp/RAG-2 KO), and common gamma-chain (gammac)/RAG-2 KO mice received a right facial nerve axotomy. In WT mice, FMN survival was 86+/-1.0% relative to the(More)
BACKGROUND Appropriate management of pain after an injury or surgical procedure has been shown to improve patient outcomes. While infrequent, nerve damage resulting from regional anesthesia can be devastating, however the mechanism remains unknown. Local anesthetics are neurotoxic yet are frequently applied to sites where peripheral nerves are regenerating.(More)
  • 1