Learn More
Many epidemiological studies have shown that diabetes, particularly type 2 diabetes, significantly increases the risk to develop Alzheimer's disease. Both diseases share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and deposition of amyloidogenic proteins. It has been suggested that these(More)
Intensive insulin therapy can prevent or slow the progression of long-term diabetes complications but, at the same time, it increases the risk for episodes of severe hypoglycemia. In our study, we used a protocol intended to mimic the levels of blood glucose that occur in type 1 diabetic patients under an intensive insulin therapy. Streptozotocin(More)
Neurodegenerative diseases (e.g. Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-related diseases) have in common the presence of protein aggregates in specific brain areas where significant neuronal loss is detected. In these pathologies, accumulating evidence supports a close correlation between(More)
Mitochondria are highly dynamic organelles involved in a multitude of cellular events. Disturbances of mitochondrial function and dynamics are associated with cells degeneration and death. Neurons, perhaps more than any other cell, depend on mitochondria for their survival. In fact, accumulating evidence reveals that mitochondria take center stage in(More)
Mitochondria have long been known as the powerhouse of the cell. However, these organelles are also pivotal players in neuronal cell death. Mitochondrial dysfunction is a prominent feature of chronic brain disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), and cerebral ischemic stroke. Data derived from morphologic, biochemical, and(More)
Evidence shows that diabetes increases the risk of developing Alzheimer's disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain(More)
Insulin, long known as an important regulator of blood glucose levels, plays important and multifaceted roles in the brain. It has been reported that insulin is an important neuromodulator, contributing to several neurobiological processes in particular energy homeostasis and cognition. Dysregulation of insulin signaling has been linked to aging and(More)
Type 2 diabetes (T2D) is considered a major risk factor for Alzheimer's disease (AD). To elucidate the links between both pathological conditions, we compared behavioral and cognitive functions, cerebral amyloid-β peptide (Aβ) levels and vasculature integrity of 11-month-old T2D and AD mice. For this purpose, we performed behavioral tests (open field,(More)
In this work, we evaluated the effects of streptozotocin (STZ)-induced hyperglycemia and an acute episode of insulin-induced hypoglycemia in plasma amino acids and cortical neurotransmitters. For that purpose, we used citrate (vehicle)-treated Wistar rats, STZ-treated rats [i.p., 50 mg/kg body weight], and STZ-treated rats injected with insulin [s.c., dose(More)
Mitochondria fulfill a number of essential cellular functions, being recognized that the strict regulation of the structure, function and turnover of these organelles is an immutable control node for the maintenance of neuronal integrity and homeostasis. Many lines of evidence posit that mitochondria constitute a convergence point of preconditioning - a(More)