Learn More
Histone deacetylases (HDACs) regulate fundamental biological processes such as cellular proliferation, differentiation, and survival via genomic and nongenomic effects. This study examined the importance of HDAC activity in the regulation of gene expression and differentiation of the developing mouse kidney. Class I HDAC1-3 and class II HDAC4, -7, and -9(More)
Angiotensin-converting enzyme or kininase II (ACE-KII) plays a central role in the control of circulating and tissue levels of angiotensin II and kinins. Both peptides have been implicated in the regulation of renal function and growth during normal development. We tested the hypothesis that the developing rat kidney expresses ACE-KII mRNA transcripts and(More)
The purpose of this study was to delineate the effects of prolonged (1 and 5 wk) unilateral ureteral obstruction (UUO) on the intrarenal renin-angiotensin and kallikrein-kinin systems in the rat. Systolic blood pressure (SBP) and plasma angiotensin (ANG) II levels were significantly higher at 1 and 5 wk of obstruction than in sham-operated groups. Also,(More)
Congenital abnormalities of the kidney and urinary tract are a common cause of end-stage renal disease in children. Host and environment factors are implicated in the pathogenesis of aberrant renal development. However, direct evidence linking gene-environment interactions with congenital renal disease is lacking. We report an animal model of renal(More)
Despite a wealth of knowledge regarding the early steps of epithelial differentiation, little is known about the mechanisms responsible for terminal nephron differentiation. The bradykinin B2 receptor (B2R) regulates renal function and integrity, and its expression is induced during terminal nephron differentiation. This study investigates the(More)
An important role for bradykinin (BK) in nephrogenesis has been suggested based on impairment of renal growth in developing rats treated with a kinin antagonist. However, direct effects of BK on renal cell mitogenesis have not been reported. In the present study, we examined the mitogenic effects of BK on cultured rat mesangial cells. Transcripts encoding(More)
p73 is a member of the p53 gene family, which also includes p53 and p63. These proteins share sequence similarity and target genes but also have divergent roles in cancer and development. Unlike p53, transcription of the p73 gene yields multiple full-length (transactivation (TA) domain) and amino terminus-truncated (DeltaN) isoforms. DeltaNp73 acts in a(More)
Previous studies have shown that the epithelial precursors of the connecting tubule and collecting duct express tissue kallikrein and bradykinin B2 receptors, respectively, suggesting the presence of a local kinin-producing/responsive system in the maturing distal nephron. However, evidence for the existence of kininogen in the developing nephron is still(More)
Angiotensin converting enzyme (ACE) inhibition leads to increased levels of bradykinin, cyclooxygenase-2 (COX-2), and renin. Since bradykinin stimulates prostaglandin release, renin synthesis may be regulated through a kinin-COX-2 pathway. To test this hypothesis, we examined the impact of bradykinin B2 receptor (B2R) gene disruption in mice on kidney COX-2(More)
The kallikrein-kinin system is developmentally expressed in newborn kidneys. In addition, bradykinin (BK) is mitogenic in cultured glomerular mesangial cells. However, the role of endogenous BK in postnatal renal development has not been defined. In this study, the role of the BK-B2 receptor in neonatal kidney growth in the rat was examined. RNA blot(More)