Learn More
The doxorubicin-selected lung cancer cell line H69AR is resistant to many chemotherapeutic agents. However, like most tumor samples from individuals with this disease, it does not overexpress P-glycoprotein, a transmembrane transport protein that is dependent on adenosine triphosphate (ATP) and is associated with multidrug resistance. Complementary DNA(More)
The 190-kDa phosphoglycoprotein multidrug resistance protein 1 (MRP1) (ABCC1) confers resistance to a broad spectrum of anticancer drugs and also actively transports certain xenobiotics with reduced glutathione (GSH) (cotransport) as well as conjugated organic anions such as leukotriene C(4) (LTC(4)). In the present study, we have investigated a series of(More)
A multidrug resistant variant (H69AR) of the human small cell lung cancer cell line NCI-H69 was obtained by culturing these cells in grad ually increasing doses of Adriamycin up to 0.8 *tMafter a total of 14 months. H69AR expresses the multidrug resistant phenotype because it is cross-resistant to anthracycline analogues including daunomycin, epi-rubicin,(More)
Multidrug resistance protein, MRP, is a 190-kDa integral membrane phosphoglycoprotein that belongs to the ATP-binding cassette superfamily of transport proteins and is capable of conferring resistance to multiple chemotherapeutic agents. Previous studies have indicated that MRP consists of two membrane spanning domains (MSD) each followed by a nucleotide(More)
A simple colorimetric test, the MTT assay, has been adapted for chemosensitivity testing of human small cell lung cancer cell lines, and fresh tumour samples. Optimal conditions for clinical chemosensitivity testing were determined using established SCLC lines. Nineteen different chemotherapeutic agents were tested, and sixteen of them were found to be(More)
We have examined the ability of eight compounds to enhance adriamycin (ADM) sensitivity of two human tumour cell lines (a small cell lung cancer cell line, NCI-H69, and a fibrosarcoma cell line, HT1080) and their multidrug-resistant variants. The resistant cell lines (H69AR and HT1080/DR4) do not overexpress P-glycoprotein. Verapamil, nicardipine,(More)
Amplification of the gene encoding multidrug resistance-associated protein (MRP) and overexpression of its cognate mRNA have been detected in multidrug-resistant cell lines derived from several different tumor types. To establish whether or not the increase in MRP is responsible for drug resistance in these cell lines, we have transfected HeLa cells with(More)
The doxorubicin-selected multidrug resistant small cell lung cancer cell line, H69AR, is cross-resistant to the Vinca alkaloids and epipodophyllotoxins, but does not overexpress P-glycoprotein, a 170 kDa plasma membrane efflux pump usually associated with this type of resistance. Monoclonal antibodies were raised against the H69AR cell line and one of(More)
The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse(More)
The acquisition of the multidrug resistance phenotype in human tumours is associated with an overexpression of the 170 kDa P-glycoprotein encoded by the multidrug resistance 1 (MDR1) gene, and also with a 190 kDa membrane ATP-binding protein encoded by a multidrug resistance-associated protein (MRP) gene. Human bladder cancer is a highly malignant neoplasm(More)