Susan M. Hutson

Learn More
Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the(More)
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination(More)
To establish an accurate molecular model of human branched-chain amino acid (BCAA) metabolism, the distribution, activity, and expression of the first 2 enzymes in the catabolic pathway--branched-chain-amino-acid aminotransferase (BCAT) and branched-chain alpha-keto acid dehydrogenase (BCKD) complex--were determined in human tissues. The same enzyme(More)
Leucine is recognized as a nutrient signal; however, the long-term in vivo consequences of leucine signaling and the role of branched-chain amino acid (BCAA) metabolism in this signaling remain unclear. To investigate these questions, we disrupted the BCATm gene, which encodes the enzyme catalyzing the first step in peripheral BCAA metabolism. BCATm(-/-)(More)
In this study, cellular distribution and activity of glutamate and gamma-aminobutyric acid (GABA) transport as well as oxoglutarate transport across brain mitochondrial membranes were investigated. A goal was to establish cell-type-specific expression of key transporters and enzymes involved in neurotransmitter metabolism in order to estimate(More)
Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the(More)
Glial cells are thought to supply energy for neurotransmission by increasing nonoxidative glycolysis; however, oxidative metabolism in glia may also contribute to increased brain activity. To study glial contribution to cerebral energy metabolism in the unanesthetized state, we measured neuronal and glial metabolic fluxes in the awake rat brain by using a(More)
Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with alpha-ketoglutarate to(More)
Gamma-carboxylation of vitamin K-dependent proteins is dependent on formation of reduced vitamin K1 (Vit.K1H2) in the endoplasmic reticulum (ER), where it works as an essential cofactor for gamma-carboxylase in post-translational gamma-carboxylation of vitamin K-dependent proteins. Vit.K1H2 is produced by the warfarin-sensitive enzyme vitamin K 2,3-epoxide(More)
Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals,(More)