Susan M . Fischer

Learn More
Testosterone is necessary for the development of male pattern baldness, known as androgenetic alopecia (AGA); yet, the mechanisms for decreased hair growth in this disorder are unclear. We show that prostaglandin D(2) synthase (PTGDS) is elevated at the mRNA and protein levels in bald scalp compared to haired scalp of men with AGA. The product of PTGDS(More)
It has long been known that excessive mitotic activity due to H-Ras can block keratinocyte differentiation and cause skin cancer. It is not clear whether there are any innate surveillants that are able to ensure that keratinocytes undergo terminal differentiation, preventing the disease. IKKalpha induces keratinocyte terminal differentiation, and its(More)
Although MK886 was originally identified as an inhibitor of 5-lipoxygenase activating protein (FLAP), recent data demonstrate that this activity does not underlie its ability to induce apoptosis [Datta, Biswal and Kehrer (1999) Biochem. J. 340, 371--375]. Since FLAP is a fatty-acid binding protein, it is conceivable that MK886 may affect other such(More)
IKK (I kappaB kinase) alpha is essential for embryonic skin development in mice. Mice deficient in IKKalpha display markedly hyperplasic epidermis that lacks terminal differentiation, and they die because of this severely impaired skin. However, the function of IKKalpha in human skin diseases remains largely unknown. To shed light on the role of IKKalpha in(More)
Nonmelanoma skin cancer is the most prevalent cancer in the United States and its incidence is on the rise. These cancers generally arise on sun-exposed areas of the body and the ultraviolet (UV) B spectrum of sunlight has been clearly identified as the major carcinogen responsible for skin cancer development. Besides inducing DNA damage directly, UV(More)
Epidemiological and dietary studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of colon cancer, possibly through a mechanism involving inhibition of cyclooxygenase (COX)-2, which is overexpressed in premalignant adenomatous polyps and colon cancer. Because ultraviolet light (UV) can induce COX-2 and nonspecific NSAIDs can(More)
The EP2 receptor for prostaglandin E2 (PGE2) is a membrane receptor that mediates at least part of the action of PGE2. It has been shown that EP2 plays a critical role in tumorigenesis in mouse mammary gland and colon. However, the possibility that the EP2 receptor is involved in the development of skin tumors was unknown. The purpose of this study was to(More)
Although MK886 was originally identified as an inhibitor of 5lipoxygenase activating protein (FLAP), recent data demonstrate that this activity does not underlie its ability to induce apoptosis [Datta, Biswal and Kehrer (1999) Biochem. J. 340, 371–375]. Since FLAP is a fatty-acid binding protein, it is conceivable that MK886 may affect other such proteins.(More)
The EP2 prostanoid receptor is one of the four subtypes of receptors for prostaglandin E2 (PGE2). We previously reported that deletion of EP2 led to resistance to chemically induced mouse skin carcinogenesis, whereas overexpression of EP2 resulted in enhanced tumor development. The purpose of this study was to investigate the underlying molecular(More)