Learn More
Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. Here, we describe the three-dimensional structure of the enzyme from Escherichia colidetermined and refined to 2.0 A resolution. Protein employed for this study was that of a site-directed mutant protein, Cys1Ala. Large crystals were grown in the presence(More)
The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during(More)
ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis. However, plant AGPases differ in several parameters, including spatial and temporal expression, allosteric regulation, and heat stability. AGPases of cereal endosperms are heat labile, while those in other tissues, such as the potato (Solanum tuberosum) tuber, are heat(More)
ADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate(More)
Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including cancers of the prostate. Over the past several years, our group has been studying how mycoplasmas could possibly initiate and propagate cancers of the prostate. Specifically, Mycoplasma hyorhinis encoded protein p37 was found to(More)
Although Arg-30, Asn-74, and Asn-79 appear totally conserved throughout the purF glutamine-dependent amidotransferases, their potential roles in catalysis and binding remain unexplored for any member of the enzyme family. Here we report the overexpression, purification, and kinetic characterization of a series of AS-B mutants which allow an examination of(More)
Site-directed mutagenesis and kinetic studies have been employed to identify amino acid residues involved in aspartate binding and transition state stabilization during the formation of beta-aspartyl-AMP in the reaction mechanism of Escherichia coli asparagine synthetase B (AS-B). Three conserved amino acids in the segment defined by residues 317-330 appear(More)
The site-directed chemical modifier [p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA) inactivates Escherichia coli asparagine synthetase B activity following pseudo-first-order kinetics, with ATP providing specific protection, with a Kd of 12 microM. The 5'-FSBA modification appears to be covalent, even though a nonstoichiometric amount (less than 10%) of(More)
ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized,(More)
Iterative saturation mutagenesis (ISM) has been used to improve the thermostability of maize endosperm ADP-glucose pyrophosphorylase (AGPase), a highly-regulated, rate-limiting and temperature-sensitive enzyme essential for starch biosynthesis. The thermo-sensitivity of heterotetrameric AGPase has been linked to grain loss in cereals and improving this(More)