Learn More
A severe recessive cerebellar ataxia, Ataxia-Oculomotor Apraxia 2 (AOA2) and a juvenile onset form of dominant amyotrophic lateral sclerosis (ALS4) result from mutations of the Senataxin (SETX) gene. To begin characterization this disease protein, we developed a specific antibody to the DNA/RNA helicase domain of SETX. In murine brain, SETX concentrates in(More)
Mutation of the SIMPLE gene (small integral membrane protein of the lysosome/late endosome) is the molecular basis of Charcot-Marie-Tooth disease type 1C (CMT1C), a demyelinating peripheral neuropathy. Although the precise function of SIMPLE is unknown, prior reports suggest it localizes to the lysosome/late endosome. Furthermore, murine Simple interacts(More)
Bacteriophage Mu is a highly efficient transposon which requires the products of the Mu A and B genes in order to transpose at a normal frequency. We have determined the nucleotide sequence of the B gene as well as that of the A-B intergenic region upstream of B. The protein product of the gene contains 312 amino acids and has a predicted molecular weight(More)
It is a generally accepted principle of biology that a protein's primary sequence is the main determinant of its tertiary structure. However, the mechanism by which a protein proceeds from an unfolded, disordered state to a folded, relatively well-ordered, native conformation is obscure. Studies have been initiated to examine the "genetics" of protein(More)
A new metabolic pathway has been created in the microorganism Erwinia herbicola that gives it the ability to produce 2-keto-L-gulonic acid, an important intermediate in the synthesis of L-ascorbic acid. Initially, a Corynebacterium enzyme that could stereoselectively reduce 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid was identified and purified. DNA(More)
  • 1