Susan J. Clark

Learn More
An understanding of DNA methylation and its potential role in gene control during development, aging and cancer has been hampered by a lack of sensitive methods which can resolve exact methylation patterns from only small quantities of DNA. We have now developed a genomic sequencing technique which is capable of detecting every methylated cytosine on both(More)
MicroRNAs (miRNA) are small noncoding RNAs commonly deregulated in cancer. The miR-200 family (miR-200a, -200b, -200c, -141 and -429) and miR-205 are frequently silenced in advanced cancer and have been implicated in epithelial to mesenchymal transition (EMT) and tumor invasion by targeting the transcriptional repressors of E-cadherin, ZEB1 and ZEB2. ZEB1(More)
CpG methylation is a key component of the epigenome architecture that is associated with changes in gene expression without a change to the DNA sequence. Since the first reports on deregulation of DNA methylation, in diseases such as cancer, and the initiation of the Human Epigenome Project, an increasing need has arisen for a detailed, high-throughput and(More)
CONTEXT Recent case reports detail the successful use of temozolomide in the management of aggressive pituitary tumours. O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that counteracts the effect of temozolomide. OBJECTIVE To study MGMT expression in pituitary tumours and consider whether MGMT expression is associated with(More)
Bisulfite sequencing has become the most widely used application to detect 5-methylcytosine (5-MeC) in DNA, and provides a reliable way of detecting any methylated cytosine at single-molecule resolution in any sequence context. The process of bisulfite treatment exploits the different sensitivity of cytosine and 5-MeC to deamination by bisulfite under(More)
MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3' UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a(More)
Epigenetic gene deregulation in cancer commonly occurs through chromatin repression and promoter hypermethylation of tumor-associated genes. However, the mechanism underpinning epigenetic-based gene activation in carcinogenesis is still poorly understood. Here, we identify a mechanism of domain gene deregulation through coordinated long-range epigenetic(More)
We report a new mechanism in carcinogenesis involving coordinate long-range epigenetic gene silencing. Epigenetic silencing in cancer has always been envisaged as a local event silencing discrete genes. However, in this study of silencing in colorectal cancer, we found common repression of the entire 4-Mb band of chromosome 2q.14.2, associated with global(More)
BACKGROUND Docetaxel is the first-line chemotherapy for castration-resistant prostate cancer (CRPC). However, response rates are ∼50% and determined quite late in the treatment schedule, thus non-responders are subjected to unnecessary toxicity. The potential of circulating microRNAs as early biomarkers of docetaxel response in CRPC patients was(More)
The identification and characterisation of differentially methylated regions (DMRs) between phenotypes in the human genome is of prime interest in epigenetics. We present a novel method, DMRcate, that fits replicated methylation measurements from the Illumina HM450K BeadChip (or 450K array) spatially across the genome using a Gaussian kernel. DMRcate(More)