Learn More
The purification and characterization of a replication-dependent chromatin assembly factor (CAF-I) from the nuclei of human cells is described. CAF-I is a multisubunit protein that, when added to a crude cytosol replication extract, promotes chromatin assembly on replicating SV40 DNA. Chromatin assembly by CAF-I requires and is coupled with DNA replication.(More)
A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically(More)
BACKGROUND Human telomeres are coated by the telomere repeat binding proteins TRF1 and TRF2, which are believed to function independently to regulate telomere length and protect chromosome ends, respectively. RESULTS Here, we show that TRF1 and TRF2 are linked via TIN2, a previously identified TRF1-interacting protein, and its novel binding partner TINT1.(More)
Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1), a negative regulator of telomere length maintenance. Like ankyrins, tankyrase contains 24(More)
1. The ability of the extracellular space to buffer rapid alkaline shifts was studied in rat cortex in vitro and in vivo. Alkaline shifts were generated by iontophoresis of OH- or were evoked by pressure ejection of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). 2. In cortical slices, alkaline shifts induced by OH- were enhanced by the(More)
TRF1 is a mammalian telomeric protein that binds to the duplex array of TTAGGG repeats at chromosome ends. TRF1 has homology to the DNA-binding domain of the Myb family of transcription factors but, unlike most Myb-related proteins, TRF1 carries one rather than multiple Myb-type DNA-binding motifs. Here we show that TRF1 binds DNA as a dimer using a large(More)
The ion selectivity of pumps and channels is central to their ability to perform a multitude of functions. Here we investigate the mechanism of the extraordinary selectivity of the human voltage-gated proton channel, H(V)1 (also known as HVCN1). This selectivity is essential to its ability to regulate reactive oxygen species production by leukocytes,(More)
Voltage-gated proton channels are strongly inhibited by Zn(2+), which binds to His residues. However, in a molecular model, the two externally accessible His are too far apart to coordinate Zn(2+). We hypothesize that high-affinity Zn(2+) binding occurs at the dimer interface between pairs of His residues from both monomers. Consistent with this idea,(More)
In mouse, the establishment of left-right (LR) asymmetry requires intracellular calcium (Ca(i)(2+)) enrichment on the left of the node. The use of Ca(i)(2+) asymmetry by other vertebrates, and its origins and relationship to other laterality effectors are largely unknown. Additionally, the architecture of Hensen's node raises doubts as to whether Ca(i)(2+)(More)
The voltage-gated proton channel exists as a dimer, although each protomer has a separate conduction pathway, and when forced to exist as a monomer, most major functions are retained. However, the proton channel protomers appear to interact during gating. Proton channel dimerization is thought to result mainly from coiled-coil interaction of the(More)