Susan E. Conrad

Learn More
Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER) positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb)(More)
Progesterone, through the progesterone receptor (PR), promotes development of the normal mammary gland and is implicated in the etiology of breast cancer. We identified PRA-regulated genes by microarray analysis of cultured epithelial organoids derived from pubertal and adult mouse mammary glands, developmental stages with differing progesterone(More)
Estrogen receptor (ER)-positive tumors represent the most common type of breast cancer, and ER-targeted therapies such as antiestrogens and aromatase inhibitors have therefore been widely used in breast cancer treatment. While many patients have benefited from these therapies, both innate and acquired resistance continue to be causes of treatment failure.(More)
MEK Partner 1 (MP1 or MAPKSP1) is a scaffold protein that has been reported to function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. Several of these pathways influence the biology of breast cancer, but MP1’s functional significance in breast cancer cells has not been investigated. In this report, we demonstrate a requirement(More)
Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates MAPK pathways, including the c-Jun NH(2)-terminal kinase (JNK) and p38 pathways. MLK3 and its family members have been implicated in JNK-mediated apoptosis. A survey of human cell lines revealed high levels of MLK3 in breast cancer cells. To learn more(More)
  • 1