Susan Claire Scholes

Learn More
The tribological testing of artificial hip and knee joints in the laboratory has been ongoing for several decades. This work has been carried out in an attempt to simulate the loading and motion conditions applied in vivo and, therefore, the potential for the success of the joint. However, several different lubricants have been used in these tests. The work(More)
The introduction of unicondylar knee prostheses has allowed the preservation of the non-diseased compartment of the knee while replacing the diseased or damaged compartment. In an attempt to reduce the likelihood of aseptic loosening, new material combinations have been investigated within the laboratory. Tribological tests (friction, lubrication, and wear)(More)
With greater numbers of primary knee replacements now performed in younger patients there is a demand for improved performance. Surface roughness of the femoral component has been proposed as a causative mechanism for premature prosthesis failure. Nineteen retrieved total knee replacements were analysed using a non-contacting profilometer to measure the(More)
This paper describes the design of a pin on plate rig which has been modified to give multi-directional motion to the test pins, resulting in elliptical and quasi-elliptical wear paths. Such paths are closer to those seen in vivo by a femoral head articulating against an acetabular cup. The description of the rig is augmented by the results of a test of(More)
It is well documented that an important cause of osteolysis and subsequent loosening of replacement hip joints is polyethylene wear debris. To avoid this, interest has been renewed in metal-on-metal and ceramic-on-ceramic prostheses. Various workers have assessed the lubrication modes of different joints by measuring the friction at the bearing surfaces,(More)
It is well known that a reduction in the volume of wear produced by articulating surfaces in artificial joints is likely to result in a lower incidence of failure due to wear particle induced osteolysis. Therefore, new materials have been introduced in an effort to produce bearing surfaces with lower, more biologically acceptable wear. Polyetheretherketone(More)
Artificial joints have been much improved since their introduction but they still have a limited lifetime. In an attempt to increase their life by improving the lubrication acting within these prostheses, compliant layered polyurethane (PU) joints have been devised. These joints mimic the natural synovial joint more closely by promoting fluid film(More)
Bovine serum is the lubricant recommended by several international standards for the wear testing of orthopaedic biomaterials; however, there are issues over its use due to batch variation, degradation, cost and safety. For these reasons, alternative lubricants were investigated. A 50-station Super-CTPOD (circularly translating pin-on-disc) wear test rig(More)
With the advent of modular total knee arthroplasty (TKA) systems, backside wear at the articulation between the ultra-high-molecular-weight-polyethylene (UHMWPE) component undersurface and the tibial baseplate has received increasing attention as a source of clinically significant polyethylene wear debris. The aim of this study was to investigate the(More)
Reverse shoulder arthroplasty is an increasingly common surgical intervention. However there are concerns and known limitations in relation to such joint replacement, while novel designs of reverse shoulder prostheses continue to appear on the market. Many claim to offer improvements over older designs but such assertions are difficult to validate when(More)