Learn More
Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of(More)
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and(More)
Structure-guided design was used to generate a series of noncovalent inhibitors with nanomolar potency against the papain-like protease (PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit antiviral activity against SARS-CoV infected Vero E6 cells and broadened specificity toward the homologous PLP2 enzyme from the human coronavirus NL63.(More)
The 5' cap structures of higher eukaryote mRNAs have ribose 2'-O-methylation. Likewise, many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases to autonomously modify their mRNAs. However, a defined biological role for 2'-O-methylation of mRNA remains elusive. Here we show that 2'-O-methylation of viral mRNA was(More)
Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1,(More)
The etiology and pathogenesis of Kawasaki disease (KD) remain unknown. As previously reported, in US patients with acute KD, IgA plasma cells (PCs) infiltrate the vascular wall. To determine whether IgA PCs are increased at mucosal sites in KD and to determine whether other nonvascular KD tissues are infiltrated by IgA PCs, the cells were immunolocalized(More)
Kawasaki Disease (KD) is a potentially fatal acute vasculitis of childhood. Although KD is the leading cause of acquired heart disease in children in developed nations, its pathogenesis remains unknown. We previously reported the novel observation that IgA plasma cells infiltrate the vascular wall in acute KD. We have now examined the clonality of this IgA(More)
Coronaviruses are positive-strand RNA viruses that replicate in the cytoplasm of infected cells by generating a membrane-associated replicase complex. The replicase complex assembles on double membrane vesicles (DMVs). Here, we studied the role of a putative replicase anchor, nonstructural protein 4 (nsp4), in the assembly of murine coronavirus DMVs. We(More)
Immune sera from convalescent patients have been shown to be effective in the treatment of patients infected with Severe Acute Respiratory Syndrome Virus (SARS-CoV) making passive immune therapy with human monoclonal antibodies an attractive treatment strategy for SARS. Previously, using Xenomouse (Amgen British Columbia Inc), we produced a panel of(More)
BACKGROUND Kawasaki disease is recognized as the most common cause of acquired heart disease in children in the developed world. Clinical, epidemiologic, and pathologic evidence supports an infectious agent, likely entering through the lung. Pathologic studies proposing an acute coronary arteritis followed by healing fail to account for the complex(More)