Learn More
BACKGROUND Ground-level concentrations of ozone (O3) and fine particulate matter [< or = 2.5 microm in aerodynamic diameter (PM2.5)] have increased since preindustrial times in urban and rural regions and are associated with cardiovascular and respiratory mortality. OBJECTIVES We estimated the global burden of mortality due to O3 and PM2.5 from(More)
BACKGROUND Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM(2.5)), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an(More)
Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies(1-6) typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants(7-9), long-term demographic changes, and the influence of climate change on air(More)
Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies 1–6 typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants 7–9 , long-term demographic changes, and the influence of climate change on air quality(More)
  • 1