Surtaj Hussain Iram

Learn More
The FadR protein of Escherichia coli has been shown to play a dual role in transcription of the genes of bacterial fatty acid metabolism. The protein acts as a repressor of beta-oxidation and an activator of unsaturated fatty acid synthesis. FadR DNA binding is antagonized by long chain acyl-CoAs, and thus FadR acts as a sensor of fatty acid availability in(More)
The SNF1/AMP-activated protein kinase (AMPK) family is required for adaptation to metabolic stress and energy homeostasis. The gamma subunit of AMPK binds AMP and ATP, and mutations that affect binding cause human disease. We have here addressed the role of the Snf4 (gamma) subunit in regulating SNF1 protein kinase in response to glucose availability in(More)
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis in mammals. AMP is believed to control the activity of AMPK by binding to the gamma subunit of this heterotrimeric enzyme. This subunit contains two Bateman domains, each of which is composed of a tandem pair of cystathionine beta-synthase (CBS) motifs. No structural(More)
Based on its genome sequence, the pathway of beta-oxidative fatty acid degradation in Salmonella enterica serovar Typhimurium LT2 has been thought to be identical to the well-characterized Escherichia coli K-12 system. We report that wild-type strains of S. enterica grow on decanoic acid, whereas wild-type E. coli strains cannot. Mutant strains (carrying(More)
The polytopic 5-domain multidrug resistance protein 1 (MRP1/ABCC1) extrudes a variety of drugs and organic anions across the plasma membrane. Four charged residues in the fifth cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 are critical for stable expression of MRP1 at the plasma membrane. Thus Ala substitution of Lys(513), Lys(516),(More)
Multidrug resistance protein 1 (MRP1) is an ATP-binding cassette transporter that effluxes drugs and organic anions across the plasma membrane. The 17 transmembrane helices of MRP1 are linked by extracellular and cytoplasmic loops (CLs), but their role in coupling the ATPase activity of MRP1 to the translocation of its substrates is poorly understood. Here(More)
Multidrug resistance protein 1 (MRP1) extrudes drugs as well as pharmacologically and physiologically important organic anions across the plasma membrane in an ATP-dependent manner. We previously showed that Ala substitutions of Lys(513) and Lys(516) in the cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 cause misfolding of MRP1,(More)
Although membrane proteins represent most therapeutically relevant drug targets, the availability of atomic resolution structures for this class of proteins has been limited. Structural characterization has been hampered by the biophysical nature of these polytopic transporters, receptors, and channels, and recent innovations to in vitro techniques aim to(More)
Multidrug resistance protein 1 (MRP1) actively transports a wide variety of drugs out of cells. To quantify MRP1 structural dynamics, we engineered a "two-color MRP1" construct by fusing green fluorescent protein (GFP) and TagRFP to MRP1 nucleotide-binding domains NBD1 and NBD2, respectively. The recombinant MRP1 protein expressed and trafficked normally to(More)
Multidrug resistance protein 1 (MRP1/ABCC1), an integral transmembrane efflux transporter, belongs to the ATP-binding cassette (ABC) protein superfamily. MRP1 governs the absorption and disposition of a wide variety of endogenous and xenobiotic substrates including various drugs across organs and physiological barriers. Additionally, its overexpression has(More)
  • 1