Suresh K. Joseph

Learn More
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy(More)
Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from(More)
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge(More)
Inositol 1,4,5-trisphosphate (InsP(3)) receptors (InsP(3)Rs) are intracellular Ca(2+) channels gated by the second messenger InsP(3). Here we describe a novel approach for recording single-channel currents through recombinant InsP(3)Rs in mammalian cells that applies patch-clamp electrophysiology to nuclei isolated from COS-7 cells transiently transfected(More)
Specific receptors on intracellular membranes mediate the Ca2+ mobilization induced by the second messenger molecule D-myo-inositol 1,4,5-triphosphate (IP3). Most cell types appear to contain multiple receptor isoforms. The review summarizes recent progress on IP3 receptor biology with a particular emphasis on distinctive structural and regulatory features(More)
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative(More)
A 592-amino acid segment of the regulatory domain of the neuronal type-I inositol 1,4,5-trisphosphate receptor (IP(3)R) isoform (type-I long, amino acids1314-1905) and the corresponding 552-amino acid alternatively spliced form present in peripheral tissues (type-I short, amino acids 1693-1733 deleted) were expressed as glutathione S-transferase fusion(More)
Previous studies have shown that small interfering RNA knockdown and pharmacological inhibition of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) stimulate autophagy. We have investigated autophagy in chicken DT40 cell lines containing targeted deletions of all three IP(3)R isoforms (triple knock-out (TKO) cells). Using gel shifts of(More)
We report the stoichiometric phosphorylation of an inositol 1,4,5-trisphosphate receptor-binding protein from rat brain by the cAMP-dependent protein kinase but not by protein kinase C or Ca2+/calmodulin-dependent protein kinase. This phosphorylation event does not markedly alter [3H]inositol 1,4,5-trisphosphate-binding characteristics. However, inositol(More)
Inositol 1,4,5-trisphosphate receptors (IP3Rs) serve to discharge Ca2+ from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca2+-dependent apoptosis. In particular we focus on the regulation of IP3Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also(More)