Suran K Galappaththige

  • Citations Per Year
Learn More
In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward(More)
The strength-interval curve plays a major role in understanding how cardiac tissue responds to an electrical stimulus. This complex behavior has been studied previously using the bidomain formulation incorporating the Beeler-Reuter and Luo-Rudy dynamic ionic current models. The complexity of these models renders the interpretation and extrapolation of(More)
Unipolar stimulation of cardiac tissue is often used in the design of cardiac pacemakers because of the low current required to depolarize the surrounding tissue at rest. However, the advantages of unipolar over bipolar stimulation are not obvious at shorter coupling intervals when the tissue near the pacing electrode is relatively refractory. Therefore,(More)
  • 1