Learn More
The RE1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress transcription of a battery of neuronal differentiation genes in non-neuronal cells by binding to a specific consensus DNA sequence present in their regulatory regions. However, REST/NRSF(-/-) mice suggest that the absence of REST/NRSF-dependent repression(More)
The maternal to zygotic transition can be viewed as a cascade of events that begins when fertilization triggers the zygotic clock that delays early ZGA until formation of a 2-cell embryo. Early ZGA, in turn, appears to be required for expression of late ZGA, and late ZGA is required to form a 4-cell embryo. ZGA in mammals is a time-dependent mechanism(More)
Medulloblastoma is the most malignant pediatric brain tumor. It is believed to originate from the undifferentiated external granule layer cells in the cerebellum, but the mechanism of tumorigenesis remains unknown. Here we studied three types of human medulloblastoma cells that express markers corresponding to different levels of neuronal differentiation.(More)
One of the important pathways of resistance to anthracyclines is governed by elevated levels of glutathione (GSH) in cancer cells. Resistant cells having elevated levels of GSH show higher expression of multidrug-resistant protein (MRP); the activity of glutathione S-transferases (GSTs) group of enzymes have also been found to be higher in some(More)
Enhancers are believed to stimulate promoters by relieving chromatin-mediated repression. However, injection of plasmid-encoded genes into mouse oocytes and embryos revealed that enhancers failed to stimulate promoters prior to formation of a two-cell embryo, even though the promoter was repressed in the maternal nucleus of both oocytes and one-cell(More)
Enhancers are generally viewed simply as extensions of promoters, lacking a function of their own. However, previous studies of mouse preimplantation embryos revealed that 1-cell embryos can utilize enhancer-responsive promoters efficiently without an enhancer, whereas 2-cell embryos require an enhancer to achieve the same levels of expression. This(More)
BACKGROUND In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the(More)
PURPOSE Previously, we have synthesized and characterized a novel Cu(II) complex, copper N-(2-hydroxy acetophenone) glycinate (CuNG). Herein, we have determined the efficacy of CuNG in overcoming multidrug-resistant cancer using drug-resistant murine and human cancer cell lines. EXPERIMENTAL DESIGN Action of CuNG following single i.m. administration (5(More)
Multidrug resistance (MDR) is still a major threat to successful clinical application of cancer chemotherapy. Copper plays an important role in biological systems, and copper is also involved in carcinogenesis. In the present investigation, we addressed the question whether metal copper might be involved in drug resistance of murine and human tumors. By(More)
BACKGROUND Imatinib mesylate is able to at least modify the course of gastrointestinal stromal tumours (GISTs). Neoadjuvant use for locally advanced lesions is evolving as a new treatment paradigm in this hitherto universally fatal disease. METHODS AND RESULTS The study patients with locally advanced GIST received neoadjuvant and adjuvant imatinib(More)