Supun M. Bakmiwewa

Learn More
The kynurenine pathway is responsible for the breakdown of the majority of the essential amino acid, tryptophan (Trp). The first and rate-limiting step of the kynurenine pathway can be independently catalysed by tryptophan 2,3-dioxygenase (Tdo2), indoleamine 2,3-dioxygenase 1 (Ido1) or indoleamine 2,3-dioxygenase 2 (Ido2). Tdo2 or Ido1 enzymatic activity(More)
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway (KP). The depletion of tryptophan and formation of KP metabolites modulates the activity of the mammalian immune, reproductive, and central(More)
Cerebral malaria (CM) has a high mortality rate and incidence of neurological sequelae in survivors. Hypoxia and cytokine expression in the brain are two mechanisms thought to contribute to the pathogenesis of CM. The cytokines interferon (IFN)-γ and lymphotoxin (LT)-α and the chemokine CXCL10 are essential for the development of CM in a mouse model.(More)
There are two theories that seek to explain the pathogenesis of cerebral malaria, the mechanical obstruction hypothesis and the immunopathology hypothesis. Evidence consistent with both ideas has accumulated from studies of the human disease and experimental models. Thus, some combination of these concepts seems necessary to explain the very complex pattern(More)
Here we report a simple new method for exposing cells to normoxic and hypoxic conditions using vacuum bags, normally employed for food storage, to establish and maintain low oxygen levels in vitro. Vacuum bags were gassed with a mixture containing specified levels of oxygen, then sealed, creating a hypoxic microenvironment for cells cultured in flasks(More)
  • 1