Supa Utamapongchai

Learn More
katA encodes the major catalase that accounts for 90 % of the total catalase activity present in Xanthomonas campestris pv. phaseoli. katA is located upstream of an ORF designated ankA encoding a cytoplasmic membrane protein homologous to eukaryotic ankyrin. Transcriptional analysis of katA and ankA identified two katA transcripts: a major monocistronic(More)
ohrR encodes a novel organic peroxide-inducible transcription repressor, and we have demonstrated that ohrR is regulated at the transcriptional and the post-transcriptional levels. Primer extension results show that ohrR transcription initiates at the A residue of the ATG translation initiation codon for the ohrR coding sequence. Thus, the gene has a(More)
katA and ahpC, encoding monofunctional catalase and alkyl hydroperoxide reductase, respectively, play important protective roles against peroxide toxicity in Xanthomonas campestris pv. phaseoli (Xp). The expression of both katA and ahpC is controlled by the global peroxide sensor and transcriptional activator, OxyR. In Xp, these two genes have compensatory(More)
Analysis of the nucleotide sequence downstream from the Xanthomonas oryzae pv. oryzae recA gene reveals two orfs designated orfX and recX. The former has the potential to code for a 5.6 kDa protein of unknown function while the latter encodes for a putative 14.6 kDa protein with homology to RecX from various bacteria. Northern blot analysis and RT-PCR(More)
A methionine sulfoxide reductase gene (msrA) from Xanthomonas campestris pv. phaseoli has unique expression patterns and physiological function. msrA expression is growth dependent and is highly induced by exposure to oxidants and N-ethylmaleimide in an OxyR- and OhrR-independent manner. An msrA mutant showed increased sensitivity to oxidants but only(More)
Singlet oxygen is a highly reactive form of molecular oxygen that is harmful to biological systems. Here, the role of three iron-containing superoxide dismutase (sodB) genes is clearly shown in protecting Agrobacterium tumefaciens against singlet oxygen toxicity. A sodBI mutant was more sensitive to singlet oxygen than both wild-type bacteria and a double(More)
  • 1