Supa Hannongbua

Learn More
ADME prediction is an extremely challenging area as many of the properties we try to predict are a result of multiple physiological processes. In this review we consider how in-silico predictions of ADME processes can be used to help bias medicinal chemistry into more ideal areas of property space, minimizing the number of compounds needed to be synthesized(More)
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3(More)
Phosphomevalonate kinase (PMK) catalyzes an essential step in the mevalonate pathway, which is the only pathway for synthesis of isoprenoids and steroids in humans. PMK catalyzes transfer of the gamma-phosphate of ATP to mevalonate 5-phosphate (M5P) to form mevalonate 5-diphosphate. Bringing these phosphate groups in proximity to react is especially(More)
A new sesquiterpene, 1-formamido-10(1→2)-abeopupukeanane (1), was isolated from the tubercle nudibranch Phyllidia coelestis Bergh, along with 2-formamidopupukeanane (2), which is reported here as a natural product for the first time. A rearrangement pathway toward the unprecedented tricyclo[4.4.0.0(2,8)]decane skeleton is proposed. Both compounds showed(More)
Currently, the usefulness of antimalarials such as pyrimethamine (PYR) is drastically reduced due to the emergence of resistant Plasmodium falciparum (Pf) caused by its dihydrofolate reductase (PfDHFR) mutations, especially the quadruple N51I/C59R/S108N/I164L mutations. The resistance was due to the steric conflict of PYR with S108N. WR99210 (WR), a(More)
The virtual screening approach for docking small molecules into a known protein structure is a powerful tool for drug design. In this work, a combined docking and neural network approach, using a self-organizing map, has been developed and applied to screen anti-HIV-1 inhibitors for two targets, HIV-1 RT and HIV-1 PR, from active compounds available in the(More)
We have investigated the structure and dynamics of the HIV-1 reverse transcriptase (HIV-RT) active site, by modelling the active conformation of the HIV-1 RT/DNA/deoxythymidine triphosphate (dTTP) ternary complex. This has included molecular dynamics simulations with the CHARMM27 force field, and combined quantum mechanics/molecular mechanics (QM/MM)(More)
Comparative molecular field analysis (CoMFA) was performed on twenty-three pyrimethamine (pyr) derivatives active against quadruple mutant type (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) dihydrofolate reductase of Plasmodium falcipaarum (PfDHFR). The represented CoMFA models were evaluated based on the various three different probe atoms, C(sp3) (+1),(More)
In 2004, we used NMR to solve the structure of the minor groove binder thiazotropsin A bound in a 2:1 complex to the DNA duplex, d(CGACTAGTCG)2. In this current work, we have combined theory and experiment to confirm the binding thermodynamics of this system. Molecular dynamics simulations that use polarizable or non-polarizable force fields with single and(More)
Quantitative structure-activity relationships (QSARs) for 40 HIV-1 inhibitors, 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine and its derivatives, were studied. Fully optimized geometries, based on the semiempirical AMl method, were used to calculate electronic and molecular properties of all compounds. In order to examine the relation between(More)