Learn More
To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on characterizing the inflammatory network and identifying key proteins by combining high-throughput data and computational techniques. We constructed the cell-specific normal and inflammatory networks for H5N1 and H1N1 infections through integrating(More)
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical(More)
Influenza A virus (IAV) infection-induced inflammatory regulatory networks (IRNs) are extremely complex and dynamic. Specific biological experiments for investigating the interactions between individual inflammatory factors cannot provide a detailed and insightful multidimensional view of IRNs. Recently, data from high-throughput technologies have permitted(More)
The control of complex networks is one of the most challenging problems in the fields of biology and engineering. In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure(More)
  • 1