Learn More
Yeast 25S rRNA was reported to contain a single cytosine methylation (m(5)C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m(5)C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1(More)
Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies.(More)
In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC-MS/MS approaches offer a perspective for comprehensive parallel quantification of all the(More)
In tabletop work with direct input, people avoid crossing each others' arms. This natural touch avoidance has important consequences for coordination: for example, people rarely grab the same item simultaneously, and negotiate access to the workspace via turn-taking. At digital tables, however, some situations require the use of indirect input (e.g., large(More)
Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2'-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also(More)
The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of(More)
The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m(1)A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for(More)
In today's world computer has become an essential part of our life and it is our best companion. We expect a computerized solution to every problem even if that can be designated as a slight difficult one, and what to say about the difficult ones. The problem we intend to solve is a kind of pattern recognition. As the pattern recognition has got many(More)
Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount(More)
RNA contains various chemical modifications that expand its otherwise limited repertoire to mediate complex processes like translation and gene regulation. 25S rRNA of the large subunit of ribosome contains eight base methylations. Except for the methylation of uridine residues, methyltransferases for all other known base methylations have been recently(More)