Learn More
Escherichia coli is generally resistant to H(2)O(2), with >75% of cells surviving a 3-min challenge with 2.5 mM H(2)O(2). However, when cells were cultured with poor sulfur sources and then exposed to cystine, they transiently exhibited a greatly increased susceptibility to H(2)O(2), with <1% surviving the challenge. Cell death was due to an unusually rapid(More)
Since the discovery of catalase, it has been postulated that aerobic organisms generate enough oxidants to threaten their own fitness and, in particular, their genetic stability. An alternative is that these enzymes exist to defend the cell against more-abundant oxidants imposed by external sources. These hypotheses were tested directly through study of(More)
Aerobic growth of Streptococcus pneumoniae results in production of amounts of hydrogen peroxide (H(2)O(2)) that may exceed 1 mM in the surrounding media. H(2)O(2) production by S. pneumoniae has been shown to kill or inhibit the growth of other respiratory tract flora, as well as to have cytotoxic effects on host cells and tissue. The mechanisms allowing(More)
In aerobic environments, mutants of Escherichia coli that lack peroxidase and catalase activities (Hpx(-)) accumulate submicromolar concentrations of intracellular H(2)O(2). We observed that in defined medium these strains constitutively expressed members of the Fur regulon. Iron-import proteins, which Fur normally represses, were fully induced. H(2)O(2)(More)
The first committed step in the biosynthesis of heme, an important cofactor of two catalases and a number of cytochromes, is catalyzed by the hemA gene product. Salmonella enterica serovar Typhimurium hemA26::Tn10d (hemA26) was identified in a genetic screen of insertion mutants that were sensitive to hydrogen peroxide. Here we show that the hemA26 mutant(More)
  • 1