Sunny Akogwu Abbah

Learn More
Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio)(More)
STUDY DESIGN A large animal study comparing interbody fusion of a bioresorbable scaffold loaded with either low-dose recombinant human bone morphogenetic protein 2 (rhBMP-2) or bone marrow-derived multipotent stromal cells (BMSCs). OBJECTIVE To compare the quality of fusion resulting from implantation of medical grade poly (ε-caprolactone)-20% tricalcium(More)
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL-TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL-TCP in a large animal model of lumbar interbody fusion. Six pigs(More)
This study aims to investigate the survival and osteogenic behavior of murine-derived adipose-tissue stromal cells (ATSCs) encapsulated in alginate microcapsules thereby instigating further studies in this cell delivery strategy for in vivo osteogenesis. Cell viability was quantified using a tetrazolium-based assay and osteogenic differentiation was(More)
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue(More)
BACKGROUND CONTEXT The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in(More)
Sodium alginate is a useful polymer for the encapsulation and immobilization of a variety of cells in tissue engineering because it is biocompatible, biodegradable and easy to process into injectable microbeads. Despite these properties, little is known of the efficacy of calcium cross-linked alginate gel beads as a biodegradable scaffold for osteogenic(More)
Tendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity(More)
STUDY DESIGN A rodent model of posterior spinal fusion. OBJECTIVE The aim of this study was to evaluate the efficacy of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered with a heparin based polylectrolyte complex (PEC) carrier in facilitating posterior spinal fusion while concurrently minimizing seroma and heterotopic(More)
In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In(More)