Sunil K. Chebolu

  • Citations Per Year
Learn More
A ghost over a finite p-group G is a map between modular representations of G which is invisible in Tate cohomology. Motivated by the failure of the generating hypothesis—the statement that ghosts between finite-dimensional G-representations factor through a projective—we define the ghost number of kG to be the smallest integer l such that the composite of(More)
Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial finite p-group G if and only if G is either C2 or(More)
Following Krause [Kra99], we prove Krull-Schmidt theorems for thick subcategories of various triangulated categories: derived categories of rings, noetherian stable homotopy categories, stable module categories over Hopf algebras, and the stable homotopy category of spectra. In all these categories, it is shown that the thick ideals of small objects(More)
A ghost in the stable module category of a group G is a map between representations of G that is invisible to Tate cohomology. We show that the only non-trivial finite p-groups whose stable module categories have no non-trivial ghosts are the cyclic groups C2 and C3. We compare this to the situation in the derived category of a commutative ring. We also(More)
We use a K-theory recipe of Thomason to obtain classi cations of triangulated subcategories via re ning some standard thick subcategory theorems. We apply this recipe to the full subcategories of nite objects in the derived categories of rings and the stable homotopy category of spectra. This gives, in the derived categories, a complete classi cation of the(More)
The smallest non-abelian p-groups play a fundamental role in the theory of Galois p-extensions. We illustrate this by highlighting their role in the definition of the norm residue map in Galois cohomology. We then determine how often these groups — as well as other closely related, larger p-groups — occur as Galois groups over given base fields. We show(More)