Learn More
Two important goals in stem cell research are to control the cell proliferation without differentiation and to direct the differentiation into a specific cell lineage when desired. Here, we demonstrate such paths by controlling only the nanotopography of culture substrates. Altering the dimensions of nanotubular-shaped titanium oxide surface structures(More)
Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative(More)
The titanium dioxide (TiO(2)) nanotube surface enables significantly accelerated osteoblast adhesion and exhibits strong bonding with bone. We prepared various sizes (30-100 nm diameter) of titanium dioxide (TiO(2)) nanotubes on titanium substrates by anodization and investigated the osteoblast cellular behavior in response to these different nanotube(More)
Delivery of therapeutic or diagnostic agents across an intact blood-brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs(More)
Magnetic nanoparticles (MNPs) have shown great promise for use as tools in a wide variety of biomedical applications, some of which require the delivery of large numbers of MNPs onto or into the cells of interest. Here we develop a quantifiable model cell system and show that intracellular delivery of even moderate levels of iron oxide (Fe(2)O(3))(More)
The in vitro endothelial response of primary bovine aortic endothelial cells (BAECs) was investigated on a flat Ti surface vs a nanostructured TiO2 nanotube surface. The nanotopography provided nanoscale cues that facilitated cellular probing, cell sensing, and especially cell migration, where more organized actin cytoskeletal filaments formed lamellipodia(More)
Implant topography is critical to the clinical success of bone-anchored implants, yet little is known how nano-modified implant topography affects osseointegration. We investigate the in vivo bone bonding of two titanium implant surfaces: titanium dioxide (TiO(2)) nanotubes and TiO(2) gritblasted surfaces. In previous in vitro studies, the topography of the(More)
Editor's Note: Toolboxes are a new, occasional feature in the Journal designed to briefly highlight a new method or a resource of general use in neuroscience or to critically analyze existing approaches or methods. For more information, see http://www. jneurosci.org/misc/itoa.shtml.