Learn More
Transglutaminase 4 is a member of enzyme family that catalyzes calcium-dependent posttranslational modification of proteins. Although transglutaminase 4 has been shown to have prostate-restricted expression pattern, little is known about the biological function of transglutaminase 4 in human. To gain insight into its role in prostate, we analyzed the(More)
An abrupt increase of intracellular Ca(2+) is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca(2+) triggers apoptotic cell death through mitochondrial swelling and activation of Ca(2+)-dependent enzymes. Transglutaminase 2 (TG2) is a Ca(2+)-dependent enzyme that catalyzes transamidation reaction(More)
Aberrant activation of transglutaminase 2 (TGase2) contributes to a variety of protein conformational disorders such as neurodegenerative diseases and age-related cataracts. The accumulation of improperly folded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), which promotes either repair or degradation of the damaged(More)
PURPOSE The activation of transglutaminase 2 (TG2) by oxidative stress through TGFβ has been reported to play a crucial role in cataract formation. The authors investigated whether TG2 is involved in selenite-induced cataract formation in rats and whether cysteamine, a chemical inhibitor of TG2, can prevent cataract formation in this model. METHODS(More)
Transglutaminase 4 (TG4) is a member of the enzyme family that catalyzes the calcium-dependent post-translational modification of proteins via cross-linking, polyamination, or deamidation. TG4 exhibits prostate-specific expression pattern and plays a crucial role in the formation of the copulatory plug in rodents. However, the physiological function(s) of(More)
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme that catalyzes crosslinking, polyamination or deamidation of glutamine residues in proteins. It has been reported that TG2 is involved in the pathogenesis of various inflammatory diseases including celiac disease, pulmonary fibrosis, cystic fibrosis, multiple sclerosis and sepsis. Recently, using a(More)
Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are(More)
Arterial restenosis frequently develops after open or endovascular surgery due to intimal hyperplasia. Since tissue transglutaminase (TG2) is known to involve in fibrosis, wound healing, and extracellular matrix remodeling, we examined the role of TG2 in the process of intimal hyperplasia using TG2-null mice. The neointimal formation was compared between(More)
  • 1