Learn More
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free-living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently(More)
Gambierdiscus spp. are epiphytic, benthic dinoflagellates. Some species have been shown to be toxic and cause ciguatera fish poisoning. We report, for the first time, the occurrence of Gambierdiscus caribaeus isolated from the waters off Jeju Island in Korea. Its morphology was similar to that of the original Belize strains of G. caribaeus. Gambierdiscus(More)
Survival of free-living and symbiotic dinoflagellates (Symbiodinium spp.) in coral reefs is critical to the maintenance of a healthy coral community. Most coral reefs exist in oligotrophic waters, and their survival strategy in such nutrient-depleted waters remains largely unknown. In this study, we found that two strains of Symbiodinium spp. cultured from(More)
Speculation surrounds the importance of ecologically cryptic Symbiodinium spp. (dinoflagellates) that occur at low abundances in reef-building corals and in the surrounding environment. Evidence acquired from extensive sampling, long-term monitoring, and experimental manipulation can allow us to deduce the ecology and functional significance of these(More)
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium(More)
The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning, and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1-5.8S-ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed(More)
Many dinoflagellates are known to cause red tides and often outgrow non-motile diatoms and motile small flagellates through active vertical migration between well-lit surface and eutrophic deep waters and/or by locating and ingesting prey cells. Their flagella play important roles in these two critical behaviors. However, the structural and functional genes(More)
Takayama spp. are phototrophic dinoflagellates belonging to the family Kareniaceae and have caused fish kills in several countries. Understanding their trophic mode and interactions with co-occurring phytoplankton species are critical steps in comprehending their ecological roles in marine ecosystems, bloom dynamics, and dinoflagellate evolution. To(More)
Coolia spp. are epiphytic and benthic dinoflagellates. Herein, we report for the first time, the occurrence of Coolia canariensis and Coolia malayensis in Korean waters. The morphology of the Korean strains of C. canariensis and C. malayensis isolated from the waters off Jeju Island, Korea was similar to that of the original Canary lslands strains and(More)
A small (7-11 μm long) dinoflagellate with thin amphiesmal plates was isolated into culture from a water sample collected in coastal waters of Yeosu, southern Korea, and examined by LM, SEM, and TEM, and molecular analyses. The hemispheric episome was smaller than the hyposome. The nucleus was oval and situated from the central to the episomal region of the(More)