Learn More
A novel hybrid evolutionary algorithm is developed based on the particle swarm optimization (PSO) and genetic algorithms (GAs). The PSO phase involves the enhancement of worst solutions by using the global-local best inertia weight and acceleration coefficients to increase the efficiency. In the genetic algorithm phase, a new rank-based multi-parent(More)
This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic(More)
Algebraic substructuring (AS) is a state-of-the-art method in eigenvalue computations, especially for large-sized problems, but originally it was designed to calculate only the smallest eigenvalues. Recently, an updated version of AS has been introduced to calculate the interior eigenvalues over a specified range by using a shift concept that is referred to(More)
  • 1