Sung-Min Seo

  • Citations Per Year
Learn More
Most immuno-analytical systems employ antibodies that do not readily dissociate upon binding to its partner antigen (i.e., target analyte; α2-macroglobulin as a model) and, thus, either need to be disposed of after one-time use or be reused after binding has been reset. To achieve a minimum-step analysis, an antibody that is capable of rapidly reversible(More)
In this study, rapidly reversible antibodies were produced and the binding kinetics, stability, and utility as an analytical binder were evaluated. The number of times the animals were immunized with the antigen (myoglobin as marker for acute myocardial infarction [AMI]) was limited to two, increasing the chances of producing premature antibodies that(More)
Immunogold-silver staining (IGSS) was adopted in cross-flow chromatographic analysis in which immunological reactions and silver intensification were sequentially conducted in the vertical and horizontal directions, respectively. Factors controlling the performance, except the silver substrate solution, were optimized to increase the signal-to-background(More)
For detection of high-sensitivity cardiac troponin I (hs-cTnI<0.01ng/mL), signal amplification was attained using a rapid immunosensor with a fluorescently-labeled, polymeric detection antibody. As fluorescent molecules tend to quench when they are less than 10nm apart, a synthetic scheme for the labeled antibody was devised to control the molecular(More)
In this study, we constructed a rapid detection system for a foodborne pathogen, Vibrio parahaemolyticus, by using enzyme-linked immunosorbent assay (ELISA)-on-a-chip (EOC) biosensor technology to minimize the risk of infection by the microorganism. The EOC results showed a detection capability of approximately 6.2x10(5) cells per ml, which was(More)
To effectively control diabetes, a method to reliably measure glucose fluctuations in the body over given time periods needs to be developed. Current glucose monitoring systems depend on the substrate decomposition by an enzyme to detect the product; however, the enzyme activity significantly decays over time, which complicates analysis. In this study, we(More)
To detect high-sensitivity cardiac troponin I (hs-cTnI; <0.01 ng/mL) at points of care, we developed a rapid immunosensor by using horseradish peroxidase polymerized in 20 molecules on average (Poly-HRP) as a tracer conjugated with streptavidin (SA-Poly-HRP). As shown in the conventional system, enhanced sensitivity could be achieved by using a sequential(More)
To assess the homeostasis of Ca(2+) metabolism, we have developed a rapid immunosensor for ionic calcium using a membrane chromatographic technique. As calcium-binding protein (CBP) is available for the recognition and undergone conformation change upon Ca(2+) binding, a monoclonal antibody sensitive to the altered structure of CBP has been employed. The(More)
An animal cell-based biosensor was investigated to monitor bacterial contamination in an unattended manner by mimicking the innate immune response. The cells (RAW 264.7 cell line) were first attached onto the solid surfaces of a 96-well microtiter plate and co-incubated in the culture medium with a sample that might contain bacterial contaminants. As(More)
The enhanced analytical performances of immunoassays that employed site-directly immobilized antibodies as the capture binders have been functionally characterized in terms of antigen-antibody complex formation on solid surfaces. Three antibody species specific to cardiac troponin I, immunoglobulin G (IgG), Fab, and F(ab')(2) were site-directly biotinylated(More)