Sung-Hwan Lim

Learn More
We report direct observation of controlled and reversible switching of magnetic domains using static (dc) electric fields applied in situ during Lorentz microscopy. The switching is realized through electromechanical coupling in thin film Fe(0.7)Ga(0.3)/BaTiO(3) bilayer structures mechanically released from the growth substrate. The domain wall motion is(More)
The contact resistance of Au/Ni/p-GaN ohmic contacts for different annealing conditions was measured. This was then correlated with microstructure, including phase distribution, observed by high-resolution electron microscopy combined with energy-filtering imaging. A contact resistance of 2.22 x 10(-4) ohms cm2 for Au/Ni contacts to p-GaN after annealing at(More)
We report a highly ordered intercalated hexagonal binary superlattice of hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) and surfactant (C12 E5 ) cylindrical micelles. When p-SWNTs (with a diameter slightly larger than that of the C12 E5 cylinders) were added to the hexagonally packed C12 E5 cylindrical-micellar system, p-SWNTs(More)
The microstructure of calcium-silicate-hydrate (C-S-H) gel, a major hydrated phase of Ordinary Portland Cement, with and without polycarboxylic ether (PCE) additives is investigated by combined analyses of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) data. The results show that these comb-shaped polymers tend to increase the(More)
We have investigated the distributions of individually isolated and hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) in the Pluronic L121-water system at the reverse hexagonal phase using small-angle X-ray scattering (SAXS) and contrast-matched small-angle neutron scattering (SANS) measurements. As the p-SWNT-L121-water system is(More)
Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar(More)
We have synthesized new blue light emitting random copolymers, poly(9,9'-n-dioctylfluorene-co-2,2',6,6'-tetraoctyloxybiphenyl-3,3'-diyl)s (PFTOBPs), via Ni(0)-mediated coupling reactions. The PL emission peaks of the resulting copolymers closely resembled those of the polyfluorene (PF) homopolymer. The EL devices fabricated using these copolymers exhibited(More)
A facile and green synthesis method for mesoporous gold sponges has been developed, which involves a simple mixing of a very small amount of thiolated-poly(ethylene glycol) (SH-PEG) and citrate-covered gold nanoparticles (Au NPs) in aqueous solution at room temperature. While SH-PEG molecules have been widely used as biocompatible hydrophilic capping agents(More)
  • 1