Sung Ho Yang

Learn More
The cytoprotective coating of physicochemically labile mammalian cells with a durable material has potential applications in cell-based sensors, cell therapy, and regenerative medicine, as well as providing a platform for fundamental single-cell studies in cell biology. In this work, HeLa cells in suspension were individually coated with silica in a(More)
The individual encapsulation of living cells has a great impact on the areas of single cell-based sensors and devices as well as fundamental studies in single cell-based biology. In this work, living Chlorella cells were encapsulated individually with abiological, functionalizable TiO(2), by a designed catalytic peptide that was inspired by(More)
The individual encapsulation of living cells has a great impact on the area of cell-based sensors and devices as well as fundamental studies in cell biology. In this work, living yeast cells were individually encapsulated with functionalizable, artificial polydopamine shells, inspired by an adhesive protein in mussels. Yeast cells maintained their viability(More)
Single-cell encapsulation promises the cytoprotection of the encased cells against lethal stressors, reminiscent of the sporulation process in nature. However, the development of a cytocompatible method for chemically mimicking the germination process (i.e., shell degradation on-demand) has been elusive, despite the shell degradation being pivotal for the(More)
The cytoprotection of individual living cells under in vitro and daily-life conditions is a prerequisite for various cell-based applications including cell therapy, cell-based sensors, regenerative medicine, and even the food industry. In this work, we use a cytocompatible two-step process to encapsulate Saccharomyces cerevisiae in a highly uniform(More)
Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-Fe(III) nanocoat effectively protected the coated mammalian cells(More)
Formation of both mechanically durable and programmably degradable layer-by-layer (LbL) films in a biocompatible fashion has potential applications in cell therapy, tissue engineering, and drug-delivery systems, where the films are interfaced with living cells. In this work, we developed a simple but versatile method for generating in situ cross-linked and(More)
The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds(More)
In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic(More)
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this(More)