Suneil Koliwad

Learn More
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by(More)
Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH). Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs), only the microglia undergo inflammatory activation,(More)
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by(More)
Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid(More)
Diet-induced obesity (DIO) leads to inflammatory activation of macrophages in white adipose tissue (WAT) and subsequently to insulin resistance. PPARgamma agonists are antidiabetic agents known to suppress inflammatory macrophage activation and to induce expression of the triacylglycerol (TG) synthesis enzyme acyl CoA: diacylglycerol acyltransferase 1(More)
Glucocorticoids are important regulators of lipid homeostasis, and chronically elevated glucocorticoid levels induce hypertriglyceridemia, hepatic steatosis, and visceral obesity. The occupied glucocorticoid receptor (GR) is a transcription factor. However, those genes regulating lipid metabolism under GR control are not fully known. Angiopoietin-like 4(More)
BACKGROUND The proper establishment of hypothalamic feeding circuits during early development has a profound influence on energy homeostasis, and perturbing this process could predispose individuals to obesity and its associated consequences later in life. The maturation of hypothalamic neuronal circuitry in rodents takes place during the initial postnatal(More)
UNLABELLED Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs(More)
Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some(More)