Sunao Takeshita

Learn More
While TNF-alpha is pivotal to the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are unknown. We find that a pure population of murine osteoclast precursors fails to undergo osteoclastogenesis when treated with TNF-alpha alone. In contrast, the cytokine dramatically stimulates(More)
Bone remodeling is performed by osteoclasts and osteoblasts at the bone surface. Inside of bone is a network of numerous osteocytes, whose specific function has remained an enigma. Here we describe a transgenic mouse model in which inducible and specific ablation of osteocytes is achieved in vivo through targeted expression of diphtheria toxin (DT)(More)
Postmenopausal osteoporosis and rheumatoid joint destruction result from increased osteoclast formation and bone resorption induced by receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor (TNF). Osteoclast formation induced by these cytokines requires NF-kappaB p50 and p52, c-Fos, and NFATc1 expression in osteoclast precursors. c-Fos(More)
Osteoclasts are acid-secreting polykaryons that have high energy demands and contain abundant mitochondria. How mitochondrial biogenesis is integrated with osteoclast differentiation is unknown. We found that the transcription of Ppargc1b, which encodes peroxisome proliferator–activated receptor-γ coactivator 1β (PGC-1β), was induced during osteoclast(More)
beta(3) integrin-null osteoclasts are dysfunctional, but their numbers are increased in vivo. In vitro, however, the number of beta(3)(-/-) osteoclasts is reduced because of arrested differentiation. This paradox suggests cytokine regulation of beta(3)(-/-) osteoclastogenesis differs in vitro and in vivo. In vitro, additional MCSF, but not receptor(More)
The most prevalent form of clinically significant osteopenia involves chronic inflammation of bone or periosseous tissues by gram-negative bacteria, as seen in suppurative otitis media (1) and periodontitis (2, 3). Severe osteolysis occurring as a sequela of chronic infection reflects enhanced osteoclastic bone resorption, a process driven by host(More)
Mycobacteria are responsible for a number of human and animal diseases and are classical intracellular pathogens, living inside macrophages rather than as free-living organisms during infection. Numerous intracellular pathogens, including Listeria monocytogenes, Shigella flexneri, and Rickettsia rickettsii, exploit the host cytoskeleton by using actin-based(More)
Hypertension and osteoporosis are two major age-related disorders; however, the underlying molecular mechanism for this comorbidity is not known. The renin-angiotensin system (RAS) plays a central role in the control of blood pressure and has been an important target of antihypertensive drugs. Using a chimeric RAS model of transgenic THM (Tsukuba(More)
The hematopoietic-restricted protein Src homology 2–containing inositol-5-phosphatase (SHIP) blunts phosphatidylinositol-3-kinase-initiated signaling by dephosphorylating its major substrate, phosphatidylinositol-3,4,5-trisphosphate. As SHIP−/− mice contain increased numbers of osteoclast precursors, that is, macrophages, we examined bones from these(More)
All forms of osteoporosis represent enhanced boneresorptive activity of osteoclasts (OCs), relative to the bone forming capacity of osteoblasts. Thus, curing this family of diseases will depend upon understanding how these cells are regulated. Two molecules, MCSF and receptor activator of NF-κB ligand (RANKL), are essential and sufficient to promote(More)