Learn More
Alternatively activated macrophages (AAM) play a crucial role in type 2 immunity. Mice deficient in ST2, a receptor for the latest member of the IL-1 family, IL-33, have impaired type 2 immune responses. We therefore reasoned that IL-33/ST2 signaling may be involved in the differentiation and activation of AAM during airway inflammation. We report here that(More)
BACKGROUND In atopic asthma, activated T helper lymphocytes are present in bronchial-biopsy specimens and bronchoalveolar-lavage (BAL) fluid, and their production of cytokines may be important in the pathogenesis of this disorder. Different patterns of cytokine release are characteristic of certain subgroups of T helper cells, termed TH1 and TH2, the former(More)
Interleukin (IL) 25 (IL-17E), a distinct member of the IL-17 cytokine family, plays important roles in evoking T helper type 2 (Th2) cell-mediated inflammation that features the infiltrations of eosinophils and Th2 memory cells. However, the cellular sources, target cells, and underlying mechanisms remain elusive in humans. We demonstrate that human Th2(More)
Atopic (AA) and nonatopic (NAA) asthma are characterized by chronic inflammation and local tissue eosinophilia. Many C-C chemokines are potent eosinophil chemoattractants and act predominantly via the CCR3. We examined the expression of eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), MCP-4, and CCR3 in the bronchial mucosa from(More)
Eosinophil-derived TGF-beta has been implicated in remodeling events in asthma. We hypothesized that reduction of bronchial mucosal eosinophils with anti-IL-5 would reduce markers of airway remodeling. Bronchial biopsies were obtained before and after three infusions of a humanized, anti-IL-5 monoclonal antibody (mepolizumab) in 24 atopic asthmatics in a(More)
Eotaxin is a newly discovered C-C chemokine which preferentially attracts and activates eosinophil leukocytes by acting specifically on its receptor CCR3. The airway inflammation characteristic of asthma is believed to be, at least in part, the result of eosinophil-dependent tissue injury. This study was designed to determine whether there is increased(More)
Tissue eosinophilia is characteristic of human atopic allergic inflammation, although the mechanism is largely unknown. In this study we test the hypothesis that eosinophil infiltration during allergen-provoked rhinitis in hayfever sufferers may occur as a consequence of activation of a population of cells having a characteristic cytokine profile equivalent(More)
Asthma and chronic obstructive pulmonary disease (COPD) are associated with Th2 and Th1 differentiated T cells. The cytokine thymic stromal lymphopoietin (TSLP) promotes differentiation of Th2 T cells and secretion of chemokines which preferentially attract them. We hypothesized that there is distinct airways expression of TSLP and chemokines which(More)
Intrinsic (nonatopic) asthma is considered to be a distinct pathogenetic variant of asthma since, unlike extrinsic (atopic) asthma, patients with the disease are skin test-negative to common aeroallergens, and have total serum IgE concentrations within the normal range. Nevertheless, the recent demonstration of increased numbers of cells expressing the(More)
In steroid-resistant (SR) asthma, there is a lack of clinical responsiveness to oral prednisone. Previous studies indicate that this may be explained by the effect of the combination of interleukin 2 (IL-2) and IL-4 on glucocorticoid receptor binding affinity. By contrast, steroid-sensitive (SS) asthmatics respond well to glucocorticoids, and this is(More)