Sun-Woo Choi

Learn More
We report a novel method for fabricating a highly sensitive chemical sensor based on a ZnO nanorod array that is epitaxially grown on a Pt-coated Si substrate, with a top–top electrode configuration. To practically test the device, its O 2 and NO 2 sensing properties were investigated. The gas sensing properties of this type of device suggest that the(More)
A new deep acceptor state is identified by density functional theory calculations, and physically activated by an Au ion implantation technique to overcome the high energy barriers. And an acceptor-compensated charge transport mechanism that controls the chemical sensing performance of Au-implanted SnO2 nanowires is established. Subsequently, an equation of(More)
Balloon whisk-like and flower-like SiOx tubes with well-dispersed Sn and joining countless SiOx loops together induce intense luminescence characteristics in substrate materials. Our synthetic technique called "direct substrate growth" is based on pre-contamination of the surroundings without the intended catalyst and source powders. The kind of supporting(More)
We report the characterization of mixed oxides nanocomposite nanofibers of (1 - x) ZnO-(x)SnO2 (x ≤ 0.45) synthesized by electrospinning technique. The diameter of calcined nanofibers depends on Sn content. Other phases like SnO, ZnSnO3, and Zn2SnO4 were absent. Photoluminescence studies show that there is a change in the blue/violet luminescence confirming(More)
  • 1