Sun-Sik Yang

Learn More
Bone reconstruction in clinical settings often requires bone substitutes. Hydroxyapatite (HAp) is a widely used bone substitute due to its osteoconductive properties and bone bonding ability. The aim of this study was to evaluate HAp granules derived from cuttlefish bone (CB-HAp) as a substitute biomaterial for bone grafts. In this study, HAp granules were(More)
BACKGROUND Angiogenin (ANG) is a potent stimulator of angiogenesis. The aim of this study was to fabricate an ANG-loaded scaffold and to evaluate its angiogenic and osteogenic effects. In this study, we fabricated an ANG-loaded scaffold using bovine bone powder and fibrin glue. We then evaluated the structural, morphological, and mechanical properties of(More)
Cuttlefish bone (CB) is an attractive natural biomaterial source to obtain hydroxyapatite (HAp). In this study, a porous polycaprolactone (PCL) scaffold incorporating CB-derived HAp (CB-HAp) powder was fabricated using the solvent casting and particulate leaching method. The presence of CB-HAp in PCL/CB-HAp scaffold was confirmed by X-ray diffraction (XRD).(More)
OBJECTIVE There is growing interest in the use of cuttlefish bone (CB) as a bone graft material. Silicon (Si) plays an important role in bone formation and calcification. This study aimed to prepare Si-substituted CB-derived hydroxyapatite (Si-CB-HAp) using a natural CB to improve the bioactivity for bone formation. MATERIALS AND METHODS We prepared(More)
Osteogenesis and angiogenesis, including cell-cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by(More)
Type I collagen (Col) is a naturally polymerizing protein and important extracellular matrix bone component. The aim of this study was to improve bone regeneration capacity by precoating the surface of biphasic calcium phosphate (BCP) granules with AT-Col, and evaluating its biological effects. BCP granules were precoated with AT-Col using adsorption and(More)
Powder-based three-dimensional (3D) printing is an excellent method to fabricate complex-shaped scaffolds for tissue engineering. However, their lower mechanical strength restricts their application in bone tissue engineering. Here, we created a 3D-printed scaffold coated with a ε-polycaprolactone (PCL) polymer solution (5 and 10 w/v %) to improve the(More)
  • 1