Sumio Iijima

Learn More
The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications.(More)
We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated(More)
Atomic-scale defects in graphene layers alter the physical and chemical properties of carbon nanostructures. Theoretical predictions have recently shown that energetic particles such as electrons and ions can induce polymorphic atomic defects in graphene layers as a result of knock-on atom displacements. However, the number of experimental reports on these(More)
Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we(More)
Edge structures of thermally treated graphite have been studied by means of atomically resolved high-resolution TEM. The method for the determination of a monolayer or more than one layer graphene sheets is established. A series of tilting experiments proves that the zigzag and armchair edges are mostly closed between adjacent graphene layers, and the(More)
We present a rational and general method to fabricate a high-densely packed and aligned single-walled carbon-nanotube (SWNT) material by using the zipping effect of liquids to draw tubes together. This bulk carbon-nanotube material retains the intrinsic properties of individual SWNTs, such as high surface area, flexibility and electrical conductivity. By(More)
Stable and rigid carbon atomic chains were experimentally realized by removing carbon atoms row by row from graphene through the controlled energetic electron irradiation inside a transmission electron microscope. The observed structural dynamics of carbon atomic chains such as formation, migration, and breakage were well explained by density-functional(More)
Thermal treatment is reported to convert finely dispersed diamond powder to multiwall carbon nanocapsules containing fullerenes such as C60. We investigate the internal dynamics of a related model system, consisting of a K@C60 endohedral complex enclosed in a C480 nanocapsule. We show this to be a tunable two-level system, where transitions between the two(More)
Cisplatin (CDDP) was incorporated inside single-wall carbon nanohorns with holes opened (SWNHox) by a nanoprecipitation method that involved dispersion of CDDP and SWNHox in a solvent followed by the solvent evaporation. The incorporated CDDP quantity increased from the previously reported value of 15 to 46%, and the total released quantity of CDDP also(More)