Suman Pokhrel

Learn More
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of(More)
We have recently shown that the dissolution of ZnO nanoparticles and Zn(2+) shedding leads to a series of sublethal and lethal toxicological responses at the cellular level that can be alleviated by iron doping. Iron doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser(More)
Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO, and Co(3)O(4)) nanoparticles in zebrafish embryos and(More)
The establishment of verifiably safe nanotechnology requires the development of assessment tools to identify hazardous nanomaterial properties that could be modified to improve nanomaterial safety. While there is a lot of debate of what constitutes appropriate safety screening methods, one approach is to use the assessment of cellular injury pathways to(More)
The knowledge on potential harmful effects of metallic nanomaterials lags behind their increased use in consumer products and therefore, the safety data on various nanomaterials applicable for risk assessment are urgently needed. In this study, 11 metal oxide nanoparticles (MeOx NPs) prepared using flame pyrolysis method were analyzed for their toxicity(More)
The fate and behavior of nanomaterials (NMs) in environmental media has important consequences for toxicity. The majority of aquatic research to date has focused on NM behavior in freshwater systems. However, pH and salinity differences of seawater affect dissolution and aggregation of NMs. In this study, physical characteristics of metal oxide NMs in(More)
Nanomaterials hold great promise for medical, technological and economical benefits. Knowledge concerning the toxicological properties of these novel materials is typically lacking. At the same time, it is becoming evident that some nanomaterials could have a toxic potential in humans and the environment. Animal based systems lack the needed capacity to(More)
Progress in developing novel gas sensors based on semiconducting metal oxides (SMOX) has been hindered by the cumbersome fabrication technologies currently employed. They involve time intensive synthesis procedures for gaining sensitive materials and preparation of the inks employed for realizing sensing layers. In this paper we review the opportunities(More)
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from(More)
A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although zinc ions have been implicated in ZnO cytotoxicity, direct identification of the(More)