Suman Banerjee

Learn More
We describe a new scalable application-layer multicast protocol, specifically designed for low-bandwidth, data streaming applications with large receiver sets. Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can support a number of different data delivery trees with desirable properties.We present extensive(More)
We consider an overlay architecture where service providers deploy a set of service nodes (called MSNs) in the network to efficiently implement media-streaming applications. These MSNs are organized into an overlay and act as application-layer multicast forwarding entities for a set of clients. We present a decentralized scheme that organizes the MSNs into(More)
In this paper we present a clustering scheme to create a hierarchical control structure for multi-hop wireless networks. A cluster is defined as a subset of vertices, whose induced graph is connected. In addition, a cluster is required to obey certain constraints that are useful for management and scalability of the hierarchy. All these constraints cannot(More)
We introduce PRM (Probabilistic Resilient Multicast): a multicast data recovery scheme that improves data delivery ratios while maintaining low end-to-end latencies. PRM has both a proactive and a reactive component; in this paper we describe how PRM can be used to improve the performance of application-layer multicast protocols, especially when there are(More)
Many wireless channels in different technologies are known to have partial overlap. However, due to the interference effects among such partially overlapped channels, their simultaneous use has typically been avoided. In this paper, we present a first attempt to model partial overlap between channels in a systematic manner. Through the model, we illustrate(More)
We propose techniques to improve the usage of wireless spectrum in the context of wireless local area networks (WLANs) using new channel assignment methods among interfering Access Points (APs). We identify new ways of channel re-use that are based on realistic interference scenarios in WLAN environments. We formulate a weighted variant of the graph(More)
Current algorithms for minimum-energy routing in wireless networks typically select minimum-cost multi-hop paths. In scenarios where the transmission power is fixed, each link has the same cost and the minimum-hop path is selected. In situations where the transmission power can be varied with the distance of the link, the link cost is higher for longer(More)
We design, implement, and evaluate a technique to identify the source network interface card (NIC) of an IEEE 802.11 frame through passive radio-frequency analysis. This technique, called PARADIS, leverages minute imperfections of transmitter hardware that are acquired at manufacture and are present even in otherwise identical NICs. These imperfections are(More)
We propose a new link metric called <i>normalized advance (NADV)</i> for geographic routing in multihop wireless networks. NADV selects neighbors with the optimal trade-off between proximity and link cost. Coupled with the local next hop decision in geographic routing, NADV enables an adaptive and efficient cost-aware routing strategy. Depending on the(More)