Sum Thai Wong

Learn More
P53 is probably the most important tumor suppressor known. Over the years, information about this gene has increased dramatically. We have built a comprehensive knowledgebase of p53, which aims to facilitate wet-lab biologists to formulate their experiments and new-comers to learn whatever they need about the gene and bioinformaticians to make new(More)
Regulated biophysical cues, such as nanotopography, have been shown to be integral for tissue regeneration and embryogenesis in the stem cell niche. Tissue homeostasis involves the interaction of multipotent cells with nanoscaled topographical features in their ECM to regulate aspects of cell behavior. Synthetic nanostructures can drive specific cell(More)
BACKGROUND Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented(More)
The ergodic hypothesis, which assumes the independence of each cell of the ensemble from all the others, is a necessary prerequisite to attach single cell based explanations to the grand averages taken from population data. This was the prevailing view about the interpretation of cellular biology experiments that typically are performed on colonies of(More)
Through mechanotransduction, cells can sense physical cues from the extracellular environment and convert them into internal signals that affect various cellular functions. For example, human mesenchymal stem cells (hMSCs) cultured on topographical gratings have been shown to elongate and differentiate to different extents depending on grating width. Using(More)
Accurate and robust extraction of the left ventricle (LV) cavity is a key step for quantitative analysis of cardiac functions. In this study, we propose an improved LV cavity segmentation method that incorporates a dynamic shape constraint into the weighting function of the random walks algorithm. The method involves an iterative process that updates an(More)
  • 1