Suleyman I Allakhverdiev

Learn More
The primary targets of thermal damage in plants are the oxygen evolving complex along with the associated cofactors in photosystem II (PSII), carbon fixation by Rubisco and the ATP generating system. Recent investigations on the combined action of moderate light intensity and heat stress suggest that moderately high temperatures do not cause serious PSII(More)
Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains. They are present in all groups of organisms, i.e., bacteria, fungi, plants and animals, and play a key role in the maintenance of the proper structure and functioning of biological membranes. The desaturases are characterized by the presence of three conserved histidine(More)
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that(More)
Low temperature is an important environmental factor that has effects on all living organisms. Various low-temperature-inducible genes encode products that are essential for acclimation to low temperature, but low-temperature sensors and signal transducers have not been identified. However, systematic disruption of putative genes for histidine kinases and(More)
Microorganisms respond to hyperosmotic stress via changes in the levels of expression of large numbers of genes. Such responses are essential for acclimation to a new osmotic environment. To identify factors involved in the perception and transduction of signals caused by hyperosmotic stress, we examined the response of Synechocystis sp. PCC 6803, which has(More)
Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was experssed under the control of a strong(More)
A sudden decrease in ambient temperature induces the expression of a number of genes in poikilothermic organisms. We report here that the cold inducibility of gene expression in Synechocystis sp. PCC 6803 was enhanced by the rigidification of membrane lipids that was engineered by disruption of genes for fatty acid desaturases. DNA microarray analysis(More)
The kinetics of genome-wide responses of gene expression during the acclimation of cells of Synechocystis sp. PCC 6803 to salt stress were followed by DNA-microarray technique and compared to changes in main physiological parameters. During the first 30 min of salt stress, about 240 genes became induced higher than 3-fold, while about 140 genes were(More)
In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for(More)