Sukriye Celikkol-Aydin

Learn More
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial(More)
16S rRNA gene profiling using a pipeline involving the Greengenes database revealed that bacterial populations in innermost (proximal to the steel surface) and outer regions of biofilms on carbon steel exposed 3 m below the surface at an offshore site in the Gulf of Guinea differed from one another and from seawater. There was a preponderance of(More)
Weathering of two church facades in Rio de Janeiro was caused substantially by salts, mainly halite and gypsum, detected by SEM and chemical analyses, which cause physical stresses by deposition within the rock. Biofilm populations, determined by SEM and as operational taxonomic units (OTUs), degraded stone by penetration, solubilization and redeposition of(More)
Next Generation Sequencing (NGS), using the Illumina® metabarcoding system, showed differences between biofilm communities on three degraded siliceous stone church façades in central Rio de Janeiro. Two church biofilms (on granite and augen gneiss) were dominated by Actinobacteria; the third (granite), surrounded by trees and further from intense vehicular(More)
  • 1