Sukhdeep S. Dhillon

Learn More
using resonant nonlinearities Julien Madéo, Pierrick Cavalié, Joshua R. Freeman, Nathan Jukam, Jean Maysonnave, Kenneth Maussang, Harvey. E. Beere, David. A. Ritchie, Carlo Sirtori, Jérôme Tignon and Sukhdeep S. Dhillon Laboratoire Pierre Aigrain, Ecole Normale Supérieure, UMR 8551 CNRS, Université P. et M. Curie, Université D. Diderot, 24 rue Lhomond,(More)
Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the(More)
We demonstrate broadband (20 THz), high electric field, terahertz generation using large area interdigitated antennas fabricated on semi-insulating GaAs. The bandwidth is characterized as a function of incident pulse duration (15-35 fs) and pump energy (2-30 nJ). Broadband spectroscopy of PTFE is shown. Numerical Drude-Lorentz simulations of the generated(More)
The emission of a quantum cascade laser can be synchronized to the repetition rate of a femtosecond laser through the use of coherent injection seeding. This synchronization defines a sampling coherence between the terahertz laser emission and the femtosecond laser which enables coherent field detection. In this letter the sampling coherence is measured in(More)
We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in(More)
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser(More)