Sukanya Iyer

Learn More
Synthetic biology offers great promise to a variety of applications through the forward engineering of biological function. Most efforts in this field have focused on employing living cells, yet cell-free approaches offer simpler and more flexible contexts. Here, we evaluate cell-free regulatory systems based on T7 promoter-driven expression by(More)
mRNA expression involves transcription initiation, elongation and degradation. In cells, these dynamic processes are highly regulated. However, experimental characterization of the dynamic processes in vivo is difficult due to the paucity of methods capable of direct measurements. We present a highly sensitive and versatile method enabling direct(More)
Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on native host promoters for the construction of circuit elements, such as logic gates, can make the implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a(More)
Realizing the potential of cell-free systems will require development of ligand-sensitive gene promoters that control gene expression in response to a ligand of interest. Here, we describe an approach to designing ligand-sensitive transcriptional control in cell-free systems that is based on the combination of a DNA aptamer that binds thrombin and the T7(More)
The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to(More)
  • 1