Learn More
The centromere protein A homologue Cse4p is required for kinetochore assembly and faithful chromosome segregation in Saccharomyces cerevisiae. It has been regarded as the exquisite hallmark of centromeric chromatin. We demonstrate that Cse4 resides at the partitioning locus STB of the 2-microm plasmid. Cse4p-STB association is absolutely dependent on the(More)
The 2-microm yeast plasmid, a benign high-copy nuclear parasite, propagates itself with nearly the same fidelity as the chromosomes of its host. Equal plasmid segregation is absolutely dependent on the cohesin complex assembled at the plasmid partitioning locus STB. However, the mechanism of cohesin action in the context of multiple plasmid copies, resident(More)
Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and(More)
The histone H3 variant Cse4 specifies centromere identity in Saccharomyces cerevisiae by its incorporation into a special nucleosome positioned at CEN DNA and promotes the assembly of the kinetochore complex, which is required for faithful chromosome segregation. Our previous work showed that Cse4 is also associated with the partitioning locus STB of the(More)
The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at(More)
BACKGROUND Metaphase cells have short spindles for efficient bi-orientation of chromosomes. The cohesin proteins hold sister chromatids together, creating Sister Chromatid Cohesion (SCC) that helps in the maintenance of short spindle lengths in metaphase. The budding yeast protein Chl1p, which has human homologs, is required for DNA damage repair,(More)
The fundamental problems in duplicating and transmitting genetic information posed by the geometric and topological features of DNA, combined with its large size, are qualitatively similar for prokaryotic and eukaryotic chromosomes. The evolutionary solutions to these problems reveal common themes. However, depending on differences in their organization,(More)
The budding yeast protein, Chl1p, is required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination and aging. In this work, we show that Chl1p is also required for viability when DNA replication is stressed, either due to mutations or if cells are treated with genotoxic agents like methylmethane sulfonate (MMS) and ultraviolet (UV)(More)
The budding yeast protein Sum1 is a transcription factor that associates with the histone deacetylase Hst1p or, in its absence, with Sir2p to form repressed chromatin. In this study, SUM1 has been identified as an allele-specific dosage suppressor of mutations in the major alpha-tubulin-coding gene TUB1. When cloned in a 2mu vector, SUM1 suppressed the(More)
  • 1