Learn More
Inducible co-stimulator ligand (ICOSL) is a rather newly defined co-stimulatory molecule, which, through interaction with ICOS expressed on T cells, plays an important role in T-cell activation, differentiation and function. T(h)2-type immune responses are critical for the development and maintenance of allergic responses including asthma. Using knockout(More)
Caveolae are flask-shaped invaginations of the plasma membrane that are present in most structural cells. They owe their characteristic Omega-shape to complexes of unique proteins, the caveolins, which indirectly tether cholesterol and sphingolipid-enriched membrane microdomains to the cytoskeleton. Caveolins possess a unique scaffolding domain that anchors(More)
RATIONALE Interleukin (IL)-13 plays a pivotal role in the pathogenesis of allergic asthma. Passive administration of its monoclonal antibody or soluble receptor to block overproduced IL-13 has been proven to be effective in controlling airway allergic responses in animal models, but these approaches have disadvantages of short half-lives, high costs, and(More)
We previously reported that a recombinant IL-13 peptide-based virus-like particle vaccine significantly suppressed murine acute airway allergic inflammatory responses. The impact of this strategy on the development of chronic airway inflammation and remodeling has not been investigated. We evaluated whether the vaccine-mediated sustained suppression of(More)
Emerging epidemiological evidence reveals a link between lung disease and exposure to indoor pollutants such as perfluorinated compounds (PFCs). PFC exposure during critical developmental stages may increase asthma susceptibility. Thus, in a murine model, we tested the hypothesis that early life and continued exposure to two ubiquitous household PFCs,(More)
Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal(More)
BACKGROUND AND PURPOSE Acute silencing of caveolin-1 (Cav-1) modulates receptor-mediated contraction of airway smooth muscle. Moreover, COX-2- and 5-lipoxygenase (5-LO)-derived prostaglandin and leukotriene biosynthesis can influence smooth muscle reactivity. COX-2 half-life can be prolonged through association with Cav-1. We suggested that lack of Cav-1(More)
The dystrophin-glycoprotein complex (DGC) is an integral part of caveolae microdomains, and its interaction with caveolin-1 is essential for the phenotype and functional properties of airway smooth muscle (ASM). The sarcoglycan complex provides stability to the dystroglycan complex, but its role in ASM contraction and lung physiology in not understood. We(More)
Simvastatin attenuates airway inflammation and hyperreactivity, hallmarks of asthma, in allergen-challenged mice. As such, it is under consideration as a novel therapeutic, thus it is important to quantify the levels of simvastatin and its pharmacologically active and interconvertible metabolite, simvastatin hydroxy acid, that can be attained in the body.(More)
House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we(More)