Learn More
Increasingly, environmental regulations are demanding more exacting chemical oxygen demand (COD) and nitrogen removal from wastewater, which come at a high economic cost. A very simple novel bioreactor, the micro-pressure swirl reactor (MPSR), can improve the dissolution and distribution of oxygen by the introduced micro-pressure swirl. Comparison with a(More)
P25 film, prepared by a facile dip-coating method without any binder, was further developed in a recirculating reactor for quinoline removal from synthetic wastewater. Macroporous foam Ni, which has an open three-dimensional network structure, was utilized as a substrate to make good use of UV rays. Field emission scanning electron microscopy and X-ray(More)
We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two-electrode(More)
 A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L−1 in the effluent during the process. When the air flow was(More)
  • 1