Learn More
Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and(More)
Development of inexpensive adsorbents from industrial wastes for the treatment of wastewaters is an important area in environmental sciences. Blast furnace slag, dust and sludge from steel plants, and carbon slurry from fertilizer plants after their treatment have been utilized as inexpensive adsorbents for the removal of phenols, which are an important(More)
A number of low cost adsorbents from steel and fertilizer industries wastes have been prepared and investigated for the removal of anionic dyes such as ethyl orange, metanil yellow and acid blue 113 from aqueous solutions. The results indicate that inorganic wastes, i.e. blast furnace dust, sludge and slag from steel plants are not suitable for the removal(More)
The present review compiles the work done over the last few decades on the use of lignin and lignin-based chars and activated carbons as adsorbents for the removal of substances from water and focuses on the utilisation of lignin as adsorbent, its conversion to chars and activated carbons and the use of these materials as adsorbents. Moreover, the review(More)
The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran from aqueous solution was studied by using fertilizer industry waste (carbon slurry) and steel industry wastes (blast furnace slag, dust, and sludge) as adsorbents in batch. Adsorption was found to be in decreasing order: carbon slurry, blast furnace sludge, dust, and slag, respectively.(More)
Waste carbon slurries (generated in fertilizer plants) and blast furnace slag (generated in steel plants) have been converted into low-cost potential adsorbents. The adsorbents have been characterized and tried for the removal of the dye basic red from wastewater. Studies were performed at different pH to find the pH at which maximum adsorption occurs.(More)
A comparative study of the adsorbents prepared from several industrial wastes for the removal of 2-fluorophenol and 2-iodophenol has been carried out. The results show that maximum adsorption on carbonaceous adsorbent prepared from fertilizer industry waste has been found to be 35.3 and 235.3 mg g(-1) for 2-fluorophenol and 2-iodophenol, respectively.(More)
The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated(More)
Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an(More)
A comparative study on the adsorption of methylphenols on adsorbents prepared from several industrial wastes has been carried out. The results show that extent of adsorption on carbonaceous adsorbent prepared from fertilizer industry waste has been found to be 37.3, 40.5, 65.9, and 88.5 mg/g for 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and(More)